THE COMPARISON OF PERFORMANCE OF THE MENTER SHEAR STRESS
TRANSPORT AND BALDWIN-LOMAX TURBULENCE MODELS WITH RESPECT
TO CFD PREDICTION OF LOSSES IN HP AXIAL TURBINE STAGES

Piotr Lampart, Jerzy Swirydczuk, Andrzej Gardzilewicz
Institute of Fluid Flow Machinery
Polish Academy of Sciences, Gdansk, Poland
e-mail: lampart@imppan.imp.pg.gda.pl

ABSTRACT

A series of computations with a 3D RANS solver FlowER
are made to compare the performance of the Menter shear stress
transport and Baldwin-Lomax turbulence models in predicting
flow patterns and losses in HP axial flow steam turbines. Two
HP stator-rotor stages are computed - one whose flow by tur-
bomachinery standards can be referred to as regular, and an-
other with flow separation at the root. The comparison of com-
putations using the Menter SST and Baldwin-Lomax turbulence
models exhibits differences as far as the trailing edge losses,
development of secondary flows and separations, and the result-
ing prediction of span-wise distributions of losses. However,
the tendency is that for the same relatively refined grid resolu-
tions, the level of pitch/span averaged losses for the Menter
SST turbulence model is only slightly above that of Baldwin-
Lomax. The computational results are validated on a model sta-
tor/rotor air turbine, giving a comparison of span-wise distribu-
tions of velocity and swirl angle downstream of the rotor trail-
ing edge and a comparison of efficiency characteristics for three
operational regimes of the model turbine.

INTRODUCTION

Simulation of turbulent effects is of great importance for the
computation of 3D viscous compressible turbomachinery flows.
There are a number of turbulence models ranging from alge-
braic eddy-viscosity to differential Reynolds stress models.
None of them has been reported so far to correctly describe all
types of flows. Therefore, it is crucial that a chosen model
should be appropriate for the investigated flow and easy to im-
plement without considerably increasing computational costs.
The simplest turbulence model is an algebraic two-layer eddy-
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viscosity model of Baldwin-Lomax 1974 that has become a
standard for turbomachinery codes. Its great assets are easy
numerical implementation, relatively good numerical stability,
reasonable performance in wall regions, and low CPU costs. A
disadvantage is that the model performs poorer in adverse pres-
sure gradient boundary layers and free shear flows away from
body surfaces, and does not account for effects of inlet free-
stream turbulence.

Two-equation models are also very often developed as clo-
sures of RANS solvers. There are a variety of k-& models, in-
cluding those of Jones & Launder 1973, Launder & Sharma
1974 or Chien 1982. k-& models are known to perform rela-
tively well in free shear layer flows. On the other hand, they re-
quire a number of damping functions near the walls, and even
with damping functions they are unable to predict well velocity
profiles and skin friction in high-Reynolds number flows.

Unlike k-£ models, a series of k-wmodels, see Wilcox 1988,
Chima 1996, do not need damping functions near the wall and
allow a simple Dirichlet condition to be specified there. Truly
inconsistent here, an asymptotic behaviour of was it approaches
the wall is usually replaced by a finite value, as the molecular
viscosity in the boundary layer exceeds the eddy-viscosity and
the form of turbulence here does not necessarily have an effect
on the mean velocity profiles and skin friction. The k-® model
of Wilcox is also capable of treating rough walls and surface
mass injections, and is also superior to the k- in compressible
flows. Another model of Wilcox 1994 contains extra functions
to improve the transition. One drawback of the k- models is
their excessive sensitivity to the free-stream value
of @, a deficiency not featuring in the k-& approach.

An idea put forward by Menter 1994 is to combine good
features of both k- and k-& models, at the same time eliminat-



ing their deficiencies. This is pronounced in his new model
called the baseline model (BSL) where k-@ model is activated
in the near wall region, and then switched to the k-& model in
the wake region and free shear layers. The formulation of the
standard high-Reynolds number 4-& model is transformed to a
k- formulation. It is then multiplied by sides by a blending
function (/-F,) and added to an original formulation of the 4-@
model multiplied by F;, with the blending function F; changing
from / in the logarithmic region of the boundary layer gradually
to 0 in the wake region.

Departing from this model, Menter 1994 also proposed an-
other model he refers to as the shear stress transport model
(SST), modifying the eddy viscosity so as to account for the ef-
fects of turbulent shear stress transport. The idea is based on
Bradshaw’s experimental observations that the principal turbu-
lent shear stress is proportional to the turbulent kinetic energy
in the wake region of the boundary layer. Arguing that superior
performance of the k- model in the logarithmic region of the
boundary layer has a limited effect on the eddy viscosity in the
wake region which finally determines the ability of an eddy-
viscosity model to predict strong adverse pressure gradient
flows, and referring to the results of the model of Johnson &
King 1985 that enforces the Bradshaw’s observation and shows
an improvement over standard algebraic models by reducing the
wake region eddy viscosity in adverse pressure gradient flows,
Menter redefines the eddy viscosity into the following form:
v, = a;k / max(a,0,€2F,), where a, is a Bradshaw constant, £2-

vorticity (absolute value) and F) is a function that changes from
I in boundary layer flows to 0 for free shear layers. Due to the
fact that in adverse pressure gradient boundary layers the pro-
duction of turbulent kinetic energy is larger than its dissipation,
the above formulation guarantees the proportional relationship
between the principal turbulent shear stress and the turbulent
kinetic energy in the boundary layer (7 = v,Q2 = pa,k).
Differential or algebraic Reynolds stress models form a
great potential to improve predictions from RANS solvers.
However, numerical implementation or numerical stability is
still an unresolved question here, also in classical test cases, not
only with respect to complex turbomachinery geometries.
Therefore, software developers still tend to hold on to simple
but robust algebraic or two-equation eddy-viscosity models and
improve them for particular applications. This tendency is also
preserved in development of a code FlowER - RANS solver of
3D viscous compressible flows in axial and radial turbomachin-
ery shortly described below, see Yershov & Rusanov 1996ab,
Yershov et al. 1999, 2000. A comprehensive review of turbu-
lence modelling for CFD can be found e.g. in a book of Wilcox
1993, paper of Menter 1996 and dissertation of Larsson 1996.
Previous works of the authors, Yershov et al. 2001, indicate
that the Menter SST model has an upper hand over the Bald-
win-Lomax model in modelling transonic compressor flows, for
example ROTOR 37. For this case, it turned out to be impossi-
ble to compute over the entire range of operation of the com-

pressor using the Baldwin-Lomax model, whereas the Menter
SST model yielded a very good agreement between the experi-
mental and computational results, including the total pressure
ratio and adiabatic efficiency over the entire operational range
of the compressor. The work of Lampart et al. 2001, concerning
the flow analysis in 3D single-row model cascades reveal that
the Menter SST model gives a better resolution of exit total
pressure loss contours, and better agreement in span-wise dis-
tribution of exit velocity and exit angle, including the overturn-
ing and underturning due to secondary flows. The aim of the
present paper is to test the performance of the two-equation
eddy-viscosity shear stress transport model of Menter, superior
in the authors’ opinion between the two-equation models, as
compared to that of the modified algebraic eddy-viscosity
model of Baldwin-Lomax, in the context of predicting flow pat-
terns and efficiency characteristics for HP stages of real large
power steam turbines.

3D RANS SOLVER
Basic equations

3D flow of viscous and compressible gas through a turbine
stage can be described by a set of unsteady Reynolds-averaged
Navier-Stokes equations written in a curvilinear body-fitted co-
ordinate system (& 7,¢), rotating with an angular speed @ (the
computational domain extends on blade-to-blade passages, ax-
ial gaps and radial gaps above/below unshrouded blade tips)
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The symbols p, p, u, v, w represent the pressure, density and
components of the velocity, while ,;, 7; 7, are molecular, tur-
bulent and total viscous stress, S; - mean strain-rate tensor; 7 —
temperature; 1=(i, +14) - effective (molecular+ turbulent) vis-
cosity, g — heat flux, A=2,, +A; =c,(y / Prip+u;/ Pry)

— effective (molecular + turbulent) heat conductivity, Pr,,, Pr,—
molecular and turbulent Prandtl numbers. The turbulence ef-
fects are modelled using two eddy-viscosity models - an alge-
braic model of Baldwin-Lomax and two-equation model of
shear stress transport (SST) proposed by Menter.

Baldwin-Lomax turbulence model

In the original Baldwin-Lomax model the boundary layer is
divided into two domains - an inner and outer layer. The turbu-
lent viscosity in the inner region is calculated from the Prandtl
concept of mixing length

lthurh = /’lizlrb = 1012‘(‘2’ (2)

where (2is the vorticity (absolute value), / - mixing length

I= ky[l —exp(-y"/ A*)] Dy =wlpn Tl u,,

where y is a distance from the wall, 7, - wall shear stress,
k=0.41 (Karman constant), 4' =26 (van Driest constant),.

The turbulent viscosity in the outer region of the boundary
layer is defined by the modified Clauser formula

Hurp = /Ugnb = aCCPpFWKFk > 3)

where a=K :'i, K¢, =0.0168 (Clauser const.), Ccp =1.6,
+¢
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Fy is the wake function

FWK' = min(nmaxF;nax 7CW7<'yma¥Ulg) /F )’

max

where U,=U,,,-U,., is a difference between the maximum and
minimum velocity at the boundary layer section; Cp, = 0.25
(wake constant), F, _and y,  are found from the maximum of
the function

F(y)= y.()[l—exp(y+ / A*)] .

F is the Klebanoff intermittency factor

F=[+ss(Co )|

where C = 0.3 (Klebanoff constant). The division between the
inner and outer layer is set at a point nearest to the wall where

i _ 0
Horn = Hump -

The flow is assumed turbulent if at some point of the
boundary layer profile the eddy viscosity calculated as pre-
scribed above is 14 time larger than the molecular viscosity of
undisturbed flow. Otherwise, the boundary layer is thought to
be laminar at this section.

The original model of Baldwin-Lomax in the code FlowER
is modified by Yershov & Rusanov 1997 to improve its calcula-
tion of eddy viscosity in the regions of separation and wake.

For separated flows, the velocity U, is assumed as a nega-

tive of the maximum backflow velocity. The coefficient Cyx in

the recirculation zone is increased according to the formula of
Kinsey & Eastep 1988

o = Cr(1+ Dyy, / L)

where Cj; is the wake constant in the original Baldwin-Lomax
model; Vep - backflow thickness; L - characteristic dimension
(blade span for endwall boundary layers or pitch for boundary
layers at blade walls), D, = 50. After Colantuoni et al. 1989, in

the proximity of separation and reattachment the wall shear
stress is calculated as a distance-averaged value

1 L
T, =@£T‘V(§)d§,,

where & is the curvilinear body-fitted coordinate, L - is a dis-
tance along the wall. In order to assure smooth changes of tur-
bulent viscosity, the flow history is taken into account using a
simple relaxation procedure that refers to turbulent viscosity
upstream, see Fletcher 1988

u, =A=-pu, +m, -

where u, , u,, u,  are the resultant turbulent viscosity, its

preliminary value and turbulent viscosity one cell upstream, re-
spectively, and x=0.1-0.3 is the correlation coefficient.
For wakes, the Clauser formula is improved and reduced
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where /4, is the turbulent viscosity at the trailing edge,

~6T" ~
=[1+5.5(y/5) } , & =min(y,, /C,25,),

and §,is a cross-wake distance between the wake axis and a
point in the wake where the vorticity assumes a maximum
value. The relation & ~25, is usually valid. The wake axis is

determined as a line that consists of points where the velocity is
minimal and the entropy function reaches its maximum. For a
near wake the following relaxation formula is applied, see Rodi
& Srinivas 1989

oy = Her +(/ute M ) exp[ 5/(2 0516)]

where 4, e s are coefficients of turbulent viscosity calcu-
lated in the wake from the Clauser formula, calculated at the
trailing edge from the Baldwin-Lomax model, and the resultant
turbulent viscosity in the near wake, respectively; & is the dis-
tance from the trailing edge section and &, is the trailing edge
boundary layer thickness.

As the original Baldwin-Lomax model was put forward for
2D flow simulation, its implementation in 3D requires a proce-
dure to account for intersecting effects of different walls and
regions (endwalls and blade walls; wake, tip leakage). The re-
sultant turbulent viscosity is calculated as an average of turbu-
lent viscosities calculated with respect to different walls (re-
gions) for independent length scales, weighted with the distance
to the other wall (region). The details of the procedure are de-
scribed in Yershov & Rusanov 1997, Yershov et al. 1999.

Shear stress transport model of Menter
The set of equations in a k- formulation reads as below

6U OR;

=G-D+L; )
o ax,-
ok
7,8, pk—(u+ O'kﬂt)g
where: G = w ; R = R
7 S po— (1t + 1) 22
ot )5
1
Pk | _| B pa)k 0
U= 2 ,L— 2(1 F)po-(z)z ok aa),
po | Ppaw @ Ox; Ox;

where £ is the turbulent kinetic energy; o =g/kf8" — specific dis-
sipation rate, and the turbulent viscosity has the form

pk/w
max[;QF, /(a,0)]

4 =

The blending functions F; (assuring smooth transition from the
k- at the wall to the &-¢ in free shear layers) and F, (assuring
the proportional relationship between the principal turbulent
shear stress and the turbulent kinetic energy in the boundary
layer) have the form

F= tanh{min(Al;Az)]4}; A =max(B;;By), Ay = 4/00'@2/2C .
CDyypy
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A vector of constants ¢ =[o,,0,,3,7] in the baseline or shear
stress transport models can be written as ¢ = Fi¢; +(1— F{)é,,

where ¢, is this vector in the k&~-@model, and ¢ in the k-& model
written in k- formulation. The constants of the SST model as-
sume the following values

=0,31; 01, = 0,85; 01> = 1,0; Gy = 0,5; 5> = 0,856;
B'=0,09; B;=0,075; B, = 0,0828; 7, = 0,553; 5 = 0,44.

Boundary conditions
The boundary conditions for the set of Egs. (1) are:
- at the walls - no-slip and no heat flux;
- at the inlet - span-wise distribution of the total pressure, total
temperature and flow angles at the inlet to the stage;
- at the exit - static pressure (either its span-wise distribution or
a value at the mid-span with the radial equilibrium equation).
For the set of Egs. (4), we have the boundary conditions:
- at the walls:

604,

k=0; o= 75
pwﬁj}

- at the inlet:

2
k:%(TwUm)Q; o= max(s02, 2} s=|ls. s

ﬂ* ’ 2 PURT
where Tu - inlet free-stream turbulence level;

- at the outlet: values of k£ and @ are extrapolated from the pre-
ceding cell centres.

The computations are carried out in one blade-to-blade pas-
sage of the stator and rotor, and converge to a steady state with
the condition of spatial periodicity and mixing plane approach
assumed. The concept of mixing plane draws on pitch-wise av-
eraging of flow parameters in the axial gap between the stator
and rotor. Tip and root leakage flows are not included. The as-
sumed inlet/exit boundary conditions impose the pressure drop
and let the mass flow rate be resultant. Comparative calcula-



tions are performed for the same pressure drop across the stage.

Numerical scheme

The governing equations are solved numerically based on
cell-centred finite-volume discretisation, Godunov-type upwind
differencing, high resolution ENO scheme, and implicit opera-
tor 8 of Beam & Warming, see Yershov et al. 1999.

VALIDATION OF THE CODE AND TURBULENCE MO-
DELS ON A MODEL AIR TURBINE STAGE (MAT)

The considered model air turbine stage of the Institute of
Thermal Engineering (ITC) £6dY, Poland - model TK9-TW3,
see Wiechowski 1988, has a geometry typical for HP steam tur-
bine stages. It operates with short-height cylindrical blading and
aft-loaded stator profiles of aspect ratios: span/chord - 0.73
(stator) and 2.20 (rotor), pitch/chord - 0.86 (stator) and 0.80
(rotor) , span/diameter - 0.08 (stator and rotor). The thermody-
namic conditions are: the pressure drop from 1 to 0.9 bar, inlet
temperature - 320K, average reaction - 0.23 (nominal condi-
tions), mass flow rate - 4.0 kg/s (nominal conditions). The tur-
bine stage was tested experimentally by Wiechowski 1985 over
a wide range of operating conditions u/c,; between 0.3 and 0.9
(u - rotor speed at the mid-span, ¢,y - theoretical enthalpy drop
across the stage), achieved by changing the rotor rotational
speed. The available experimental data do not show field con-
tours but disclose, among others, the stage efficiency as well as
span-wise distributions of the exit velocity and swirl angle for
the stator and rotor in the tested range of operating conditions.
Therefore, these quantities will be sought for in the process of
computations of the model TK9-TW3 to validate the code and
the considered models of turbulence.

The computations are carried out for three values of w/cyy
equal to 0.45, 0.54 (nominal conditions) and 0.65. The specific
heat ratio and gas constant for the air are assumed as y=1.401
and R=283 J/(kgK). An H-type grid of 1 200 000 cells (stator +
rotor) refined near the endwalls, blade walls, trailing and lead-
ing edges is assumed for the computations. Gridding of the flow
domain in the meridional view and in the blade-to-blade section
is presented in Fig. 1. The results may not be exactly grid-
independent, but show little change compared to those of 1 000
000 or 800 000 cells. The total pressure profile at the inlet is
assumed uniform, with the inlet endwall boundary layers of
thickness 2% of the blade span each, and low inlet free-stream
turbulence level.

Fig. 2 shows the comparison of computational results, ob-
tained with the help of the Baldwin-Lomax and Menter SST
models of turbulence, with experimental data for the absolute
velocity and absolute swirl angle (measured from the direction
normal to the cascade front) at the exit from the rotor for
u/cy7=0.45, 0.54 and 0.65. The computed distributions were
captured at the section located 135% of the axial chord down-
stream of the rotor trailing edge, that is at a distance corre-
sponding to the location of the measuring probe at the experi-

mental facility. In general, the computational and experimental
results reveal satisfactory qualitative and also quantitative
agreement for the three investigated values of load, however,
the distributions and their span-wise averaged values obtained
with the help of the Menter SST closure seem to agree better
with the experimental results than those of the Baldwin-Lomax
turbulence model. The reference axial section is relatively far
downstream of the blading system, therefore, it is expected that
the processes of mixing and dissipation of 3D flow structures
are largely accomplished there. This is why the experimental
distributions of the investigated quantities do not exhibit con-
siderable 3D peaks characteristic for sections more upstream.
Neither do the computational curves for the Menter SST model,
which suggests the appropriate rate of dissipation of 3D flows
in this model. The span-wise locations of those largely dissi-
pated peaks and other non-uniformities of distributions are re-
produced relatively well. The curves are less ,,smooth” for the
Baldwin-Lomax model, with 3D peaks more clear, which sug-
gests too little dissipation of flow non-uniformities. It seems
that the Menter SST model better predicts the level of eddy vis-
cosity in flow, and rate of dissipation of flow non-uniformities.

The computed efficiency characteristics of the stage as a
function of load u/cy; obtained with the considered two closures
of RANS equations are shown in Fig. 3 against the experimen-
tal graph. The stage efficiency is defined here as the stage loss
with the exit energy subtracted from unity, see also Appendix.
For the three examined operating conditions the Baldwin-
Lomax model overestimates the stage efficiency, while the
Menter SST model apparently underestimates it, but still leav-
ing room for better accuracy (and higher efficiency) on more
refined grids. The differences in estimation of the stage effi-
ciency between the two models are below 1%.

In the next chapter, we will concentrate on differences in
global characteristics as well as in local flow patterns in turbine
flows modelled with the help of the Baldwin-Lomax and Men-
ter SST models. Two HP stages of a real large power turbine
will be computed. These stages operate at the same pressure
drop of 0.9 as the model air turbine, and have similar aspect ra-
tios (short-height blading) and the same stator and rotor pro-
files, however differing in profile chords, stagger angles and
blade numbers. The flow in the first HPT stage can, by turbo-
machinery standards, be referred to as regular and well-tailored
to the flow conditions. Regular flow patterns in the second HPT
stage are disturbed by the separation at the rotor root. The sepa-
ration is a result of inadequate local incidence on the rotor
blade at the root, and can relatively easy be corrected in the de-
sign process by more careful stator/rotor matching for the as-
sumed operational range of thermodynamic parameters. How-
ever, the example provides a fertile field for investigations of
the effect of turbulence modelling on computational flow pat-
terns and characteristics, as in the case of adverse pressure gra-
dient flows, including separated flows, the performance of the
Baldwin-Lomax model is usually poor and it is expected that
the Menter SST model should produce more adequate results.
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Fig. 1. MAT - computational grids for the stator and rotor cascades of the model turbine stage

in meridional view (top) and in the blade-to-blade section at the mid-span (bottom).
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Fig. 3. MAT - computed and experimental efficiency characteristics of the model air turbine stage as a function of load u/c;.



HP TURBINE STAGE (HPT1)

The HP stage of a large power steam turbine to be tested
first is a typical impulse stage with short-height cylindrical
blading, including aft-loaded stator profiles, operating at the
pressure drop from 96 to 88 bar, inlet temperature - 780K, flow
rate - 155 kg/s, stator exit Mach number - 0.32, average reac-
tion - 0.25. The aspect ratios are: span/chord - 0.57 (stator) and
1.59 (rotor), pitch/chord - 0.57 (stator) and 0.78 (rotor), span/
diameter - 0.059 (stator) and 0.064 (rotor). The specific heat
ratio and gas constant are assumed as y=1.29 and R=426
J/(kgK). The calculations are carried out on an H-type grid of
960 000 cells (stator + rotor) refined near the endwalls, blade
walls, trailing and leading edges. Similar to the model air tur-
bine, the total pressure profile at the inlet is assumed uniform,

ISOLINE VALUES
1+ .9188E+@7
5+ .9151E+87
9+ .9283E+87

13+ .9254E+A7

17+ .9385E+A7
21+ .935BE+@7
25+ .9488E+@7
29+ .9459E+@7
33+ .9510E+87
37+ .9962E+@7

with the inlet endwall boundary layers of thickness 2% of the
blade span each, and low inlet free-stream turbulence level.

Fig. 4 shows the comparison of total pressure contours
downstream of the stator trailing edge obtained with Baldwin-
Lomax and Menter SST turbulence modelling. The figures do
not particularly differ, save for the fact that the wake is slightly
thicker and the total pressure peaks due to secondary flows, es-
pecially that at the tip, are closer to the endwalls in the case of
the Menter SST model. Velocity vectors at the suction surface
of the rotor presented in Fig. 5 indicate an earlier onset, in
terms of the stream-wise coordinate, and a larger span-wise ex-
tension of the secondary flow zones in the Baldwin-Lomax
model. Fig. 6 showing the comparison of contours of the en-
tropy function (s=p/p’, p - pressure, p - density) in the rotor at

Fig. 4. HPT1 - total pressure contours downstream of the stator; Baldwin-Lomax (left), Menter SST (right).
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Fig. 5. HPT1 - velocity vectors at the suction surface of the rotor; Baldwin-Lomax (left), Menter SST (right).
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Fig. 6. HPT1 - entropy function contours in the rotor: 75% axial chord downstream of the leading edge (left), at the trailing edge (cen-
tre) and 18% axial chord downstream of the trailing edge (right); Baldwin-Lomax (left), Menter SST (right).
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Fig. 7. HPT1 - span-wise distribution of kinetic energy losses in the stator (left), rotor (centre) and stage without exit energy (right).
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Fig. 8. HPT1 - span-wise distribution of rotor exit swirl angle.

streamwise-subsequent sections illustrates the development of
secondary flow patterns in the rotor, confirming the tendency
observed in the stator that the loss centres due to secondary
flows remain closer to the endwalls, and the wake and boundary
layers are slightly thicker in the case of the Menter SST model.
Fig. 7 shows a span-wise distribution of kinetic energy
losses in the stator, rotor and stage without the exit energy, see
also the definitions of losses given in Appendix. The stator loss
is captured in the axial gap 10% of the stator axial chord down-
stream of the trailing edge, the rotor loss - 45% of the rotor ax-
ial chord downstream of the trailing edge. The tendency is that
the Menter SST model predicts a slightly higher level of 2D
losses. For the stator, the difference is about 0.2%, for the rotor
- 0.4%. However, the similar distributions at the trailing edges
of the stator and rotor will show that the boundary layer losses
obtained using the Menter SST and Baldwin-Lomax are nearly
the same, below a 0.1% accuracy margin, both for the stator and
rotor. The main difference in predictions of the 2D loss is in the
level of the trailing edge loss due to the fact that the Menter
SST model predicts more eddy viscosity in the wake, resulting
is a larger rate of dissipation of kinetic energy. The Menter SST
model predicts also more eddy viscosity in the region of secon-
dary flows, and a higher local loss. However, the difference in
the level of secondary loss is decreased due to a smaller span-
wise extension of the secondary flow zone predicted by the
Menter SST model. The secondary loss maxima are also relo-
cated compared to those of the Baldwin-Lomax model. The
pitch/span averaged value of the stator loss differs by 0.2% (BL
- 3.9%, SST - 4.1%), the rotor loss - 0.5% (BL - 6.6%, SST -
7.1%). The tendencies observed for the stator and rotor summa-

rised on the graph of stage losses without the exit energy, cap-
tured similar to that of the rotor loss, that is 45% of the rotor
axial chord downstream of the rotor trailing edge. It is clear that
the Menter SST curves have the 2D loss base slightly moved up
and 3D peaks increased and relocated, compared to those of the
Baldwin-Lomax model. Due to the low reaction of the stage
and a resulting small contribution of the rotor loss to the overall
stage loss, the pitch/span averaged values of the sta-ge loss
without the exit energy differ by 0.3% only (BL - 5.2%, SST -
5.5%). The mean exit swirl angle differs by 1.1° (BL - 9°, SST -
10.1°). The exit angle peaks due to 3D effects undergo moder-
ate changes in position and magnitude, see Fig. 8. For the same
pressure drop, both turbulence models predict similar resultant
mass flow rates (BL - 155 kg/s, SST - 154.5 kg/s).

HP TURBINE STAGE (HPT2)

The second HP stage of another large power steam turbine
is a similar impulse stage, operating at the pressure drop from
79 to 71 bar, inlet temperature - 760K, flow rate - 165 kg/s, sta-
tor exit Mach number - 0.35, average reaction - 0.20. The as-
pect ratios are: span/chord - 0.81 (stator) and 2.14 (rotor), pitch/
chord - 0.73 (stator) and 0.75 (rotor), span/diameter - 0.069
(stator) and 0.073 (rotor). HPT2 has the same stator and rotor
profiles as MAT and HPT1, but differing in chords and stagger
angles (also blade number is different). Perfect gas constants
are assumed as y=1.29, R=428 J/(kgK). The calculations are al-
so made on an H-type grid of 960 000 cells (stator + rotor).

The comparison of total pressure contours downstream of
the stator trailing edge presented in Fig. 9 confirms the observa-
tions from Fig. 4. The wake is slightly thicker and the total
pressure peaks due to secondary flows, especially that at the tip,
are closer to the endwalls in the case of the Menter SST model.
Velocity vectors at the suction surface of the rotor presented in
Fig. 10 again indicate an earlier onset and larger span-wise ex-
tension of the secondary flow zones in the Baldwin-Lomax
model. A separation from the suction surface at the root also
comes into play here. This phenomenon is also clear from Fig.
11 showing entropy function contours in the rotor 6% of the
blade span from the root. The separation in the Menter SST
model is clearly delayed and the pitch-wise extension of the
separation zone reduced, compared to the predictions of the
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Fig. 10. HPT2 - velocity vectors at the suction surface of the rotor; Baldwin-Lomax (left), Menter SST (right).
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Fig. 11. HPT2 - entropy function contours in the rotor 6% bla-
de span from root; Baldwin-Lomax (left), Menter SST (right).

Baldwin-Lomax model. Entropy function contours in the rotor
at subsequent sections presented in Fig. 12 illustrate the devel-
opment of secondary flow patterns and separation in the rotor,
with the same tendency as observed in the stator that the loss
centres due to secondary flows (at the root due to secondary
flows and separation combined) remain closer to the endwalls,
and the wake and boundary layers are slightly thicker in the
Menter SST model.

Fig. 13 shows a span-wise distribution of kinetic energy
losses in the stator, rotor and stage without the exit energy cap-
tured at the same distances downstream of the respective trail-
ing edges as in the previous example. The tendency is that
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there is practically little difference in determination of the pro-
file boundary layer losses between the two models. The
Menter SST model predicts more eddy viscosity in the wake,
secondary flow regions and separation zones. This results in
more trailing edge loss, and also secondary loss and separation
loss, say, per volume of the secondary flow and separation
zones. However, the difference in secondary and separation
losses between the two models is decreased due to a smaller
extension of the secondary flow and separation zones in the
Menter SST model. The secondary and separation loss
maxima are considerably relocated, compared to those of the
Baldwin-Lomax model. The pitch/span averaged value of the
stator loss differs by 0.2% (BL - 3.1%, SST - 3.3%), the rotor
loss - 0.6% (BL - 7.8%, SST - 8.4%), the stage loss without
the exit energy differs again by 0.3% only (BL - 5.1%, SST -
5.4%). Although peaks of the rotor exit swirl angle in Fig. 14
undergo considerable changes in position and magnitude, the
mean exit swirl angle practically does not change. For the
same pressure drop, the resultant mass flow rate for the Bald-
win-Lomax model is 165.5 kg/s, for Menter SST - 165 kg/s.

Although the flow in the stage HPT2 has a more complex
nature, compared to that of the stage HPT1, mainly due to the
interaction of the separation with the main flow and secondary
flows, and there are significant redistributions of losses span-
wise, the difference in pitch/span averaged values of the stage
loss is still a mere 0.3%.
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Fig. 13. HPT2 - span-wise distribution of kinetic energy losses in the stator (left), rotor (centre) and stage without exit energy (right).

1a.

-18

-15. ‘l\* :

¥ —

— - —ssT

8 2 .4 6 .8 1.8
BLADE HEIGHT

ROTOR EXIT ANGLE
|
e

-28.

Fig. 14. HPT2 - span-wise distribution of rotor exit swirl angle.

CONCLUSIONS

Two HP stator-rotor stages have been computed using a 3D
RANS solver FlowER with closures in the form of the modified
algebraic eddy-viscosity model of Baldwin-Lomax, or the two-
equation eddy-viscosity shear stress transport model of Menter,
a relatively new two-equation model combining good features
of the k- and k-& models. The computations show that the
Menter SST model predicts more eddy viscosity in the wake,
secondary flow regions and separation zones. However, a
smaller extension of the secondary flow and separation zones is
observed in the Menter SST model. There are alterations in
span-wise distributions of kinetic energy losses in each blade
row and the stage as a whole, by moving slightly up the 2D loss
base (increased trailing edge loss), and increasing and relocat-
ing 3D peaks, which remain closer to the endwalls in the

Menter SST model. There are also changes in the mean and
span-wise distribution of the exit velocity and swirl angle.
However, the pitch/span-averaged values of the overall stage
loss do not significantly differ both for regular HP turbine flow
patterns, and those more complex. Although the Menter SST
model has an upper hand over the Baldwin-Lomax model in
modelling transonic turbomachinery flows, especially compres-
sor flows, the computations carried out for this paper also
authorise the use of the less advanced Baldwin-Lomax model
for engineering applications with regards to HP turbines.
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APPENDIX

In this chapter, kinetic energy losses in the stator, rotor and
stage are defined. Fig. A1, which illustrates the process of ex-
pansion in a turbine stage in the form of an enthalpy-entropy
diagram, will help to explain definitions gathered in Tab. Al.

Stator loss

Si=m=My) /! (hyy — M)

Rotor loss

$2 == hy) I Uy = )

stage loss without exit energy =
stator + rotor loss

S = —hy) ! (hyy — Ing)

stage loss with exit energy

Sioe =y = y) [ (hyy — hoy)

Tab. Al. Kinetic energy losses in the stator, rotor and stage.

Symbols:

c - absolute velocity,

= h - enthalpy,
T hyr p - pressure,
!
1 0.6w? S- entropy, .
| P, w - relative velocity,

1 - behind the stator
2 - behind the stage
s, s’ - isentropic

T - total
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0
h,, 7 2T _~ h,, Subscripts:
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Fig. Al. Enthalpy-entropy diagram for a turbine stage.




